edtaa3func.c 19.4 KB
Newer Older
Nicolas.Rougier's avatar
Nicolas.Rougier committed
1
/*
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * Copyright 2009 Stefan Gustavson (stefan.gustavson@gmail.com)
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *  1. Redistributions of source code must retain the above copyright notice,
 *     this list of conditions and the following disclaimer.
 *
 *  2. Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY STEFAN GUSTAVSON ''AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
 * EVENT SHALL STEFAN GUSTAVSON OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * The views and conclusions contained in the software and documentation are
 * those of the authors and should not be interpreted as representing official
 * policies, either expressed or implied, of Stefan Gustavson.
 *
 *
Nicolas.Rougier's avatar
Nicolas.Rougier committed
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
 * edtaa3()
 *
 * Sweep-and-update Euclidean distance transform of an
 * image. Positive pixels are treated as object pixels,
 * zero or negative pixels are treated as background.
 * An attempt is made to treat antialiased edges correctly.
 * The input image must have pixels in the range [0,1],
 * and the antialiased image should be a box-filter
 * sampling of the ideal, crisp edge.
 * If the antialias region is more than 1 pixel wide,
 * the result from this transform will be inaccurate.
 *
 * By Stefan Gustavson (stefan.gustavson@gmail.com).
 *
 * Originally written in 1994, based on a verbal
 * description of the SSED8 algorithm published in the
 * PhD dissertation of Ingemar Ragnemalm. This is his
 * algorithm, I only implemented it in C.
 *
 * Updated in 2004 to treat border pixels correctly,
 * and cleaned up the code to improve readability.
 *
 * Updated in 2009 to handle anti-aliased edges.
 *
 * Updated in 2011 to avoid a corner case infinite loop.
 *
*/
#include <math.h>
59
#include "edtaa3func.h"
Nicolas.Rougier's avatar
Nicolas.Rougier committed
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577

/*
 * Compute the local gradient at edge pixels using convolution filters.
 * The gradient is computed only at edge pixels. At other places in the
 * image, it is never used, and it's mostly zero anyway.
 */
void computegradient(double *img, int w, int h, double *gx, double *gy)
{
    int i,j,k;
    double glength;
#define SQRT2 1.4142136
    for(i = 1; i < h-1; i++) { // Avoid edges where the kernels would spill over
        for(j = 1; j < w-1; j++) {
            k = i*w + j;
            if((img[k]>0.0) && (img[k]<1.0)) { // Compute gradient for edge pixels only
                gx[k] = -img[k-w-1] - SQRT2*img[k-1] - img[k+w-1] + img[k-w+1] + SQRT2*img[k+1] + img[k+w+1];
                gy[k] = -img[k-w-1] - SQRT2*img[k-w] - img[k+w-1] + img[k-w+1] + SQRT2*img[k+w] + img[k+w+1];
                glength = gx[k]*gx[k] + gy[k]*gy[k];
                if(glength > 0.0) { // Avoid division by zero
                    glength = sqrt(glength);
                    gx[k]=gx[k]/glength;
                    gy[k]=gy[k]/glength;
                }
            }
        }
    }
    // TODO: Compute reasonable values for gx, gy also around the image edges.
    // (These are zero now, which reduces the accuracy for a 1-pixel wide region
	// around the image edge.) 2x2 kernels would be suitable for this.
}

/*
 * A somewhat tricky function to approximate the distance to an edge in a
 * certain pixel, with consideration to either the local gradient (gx,gy)
 * or the direction to the pixel (dx,dy) and the pixel greyscale value a.
 * The latter alternative, using (dx,dy), is the metric used by edtaa2().
 * Using a local estimate of the edge gradient (gx,gy) yields much better
 * accuracy at and near edges, and reduces the error even at distant pixels
 * provided that the gradient direction is accurately estimated.
 */
double edgedf(double gx, double gy, double a)
{
    double df, glength, temp, a1;

    if ((gx == 0) || (gy == 0)) { // Either A) gu or gv are zero, or B) both
        df = 0.5-a;  // Linear approximation is A) correct or B) a fair guess
    } else {
        glength = sqrt(gx*gx + gy*gy);
        if(glength>0) {
            gx = gx/glength;
            gy = gy/glength;
        }
        /* Everything is symmetric wrt sign and transposition,
         * so move to first octant (gx>=0, gy>=0, gx>=gy) to
         * avoid handling all possible edge directions.
         */
        gx = fabs(gx);
        gy = fabs(gy);
        if(gx<gy) {
            temp = gx;
            gx = gy;
            gy = temp;
        }
        a1 = 0.5*gy/gx;
        if (a < a1) { // 0 <= a < a1
            df = 0.5*(gx + gy) - sqrt(2.0*gx*gy*a);
        } else if (a < (1.0-a1)) { // a1 <= a <= 1-a1
            df = (0.5-a)*gx;
        } else { // 1-a1 < a <= 1
            df = -0.5*(gx + gy) + sqrt(2.0*gx*gy*(1.0-a));
        }
    }    
    return df;
}

double distaa3(double *img, double *gximg, double *gyimg, int w, int c, int xc, int yc, int xi, int yi)
{
  double di, df, dx, dy, gx, gy, a;
  int closest;
  
  closest = c-xc-yc*w; // Index to the edge pixel pointed to from c
  a = img[closest];    // Grayscale value at the edge pixel
  gx = gximg[closest]; // X gradient component at the edge pixel
  gy = gyimg[closest]; // Y gradient component at the edge pixel
  
  if(a > 1.0) a = 1.0;
  if(a < 0.0) a = 0.0; // Clip grayscale values outside the range [0,1]
  if(a == 0.0) return 1000000.0; // Not an object pixel, return "very far" ("don't know yet")

  dx = (double)xi;
  dy = (double)yi;
  di = sqrt(dx*dx + dy*dy); // Length of integer vector, like a traditional EDT
  if(di==0) { // Use local gradient only at edges
      // Estimate based on local gradient only
      df = edgedf(gx, gy, a);
  } else {
      // Estimate gradient based on direction to edge (accurate for large di)
      df = edgedf(dx, dy, a);
  }
  return di + df; // Same metric as edtaa2, except at edges (where di=0)
}

// Shorthand macro: add ubiquitous parameters dist, gx, gy, img and w and call distaa3()
#define DISTAA(c,xc,yc,xi,yi) (distaa3(img, gx, gy, w, c, xc, yc, xi, yi))

void edtaa3(double *img, double *gx, double *gy, int w, int h, short *distx, short *disty, double *dist)
{
  int x, y, i, c;
  int offset_u, offset_ur, offset_r, offset_rd,
  offset_d, offset_dl, offset_l, offset_lu;
  double olddist, newdist;
  int cdistx, cdisty, newdistx, newdisty;
  int changed;
  double epsilon = 1e-3;

  /* Initialize index offsets for the current image width */
  offset_u = -w;
  offset_ur = -w+1;
  offset_r = 1;
  offset_rd = w+1;
  offset_d = w;
  offset_dl = w-1;
  offset_l = -1;
  offset_lu = -w-1;

  /* Initialize the distance images */
  for(i=0; i<w*h; i++) {
    distx[i] = 0; // At first, all pixels point to
    disty[i] = 0; // themselves as the closest known.
    if(img[i] <= 0.0)
      {
	dist[i]= 1000000.0; // Big value, means "not set yet"
      }
    else if (img[i]<1.0) {
      dist[i] = edgedf(gx[i], gy[i], img[i]); // Gradient-assisted estimate
    }
    else {
      dist[i]= 0.0; // Inside the object
    }
  }

  /* Perform the transformation */
  do
    {
      changed = 0;

      /* Scan rows, except first row */
      for(y=1; y<h; y++)
        {

          /* move index to leftmost pixel of current row */
          i = y*w;

          /* scan right, propagate distances from above & left */

          /* Leftmost pixel is special, has no left neighbors */
          olddist = dist[i];
          if(olddist > 0) // If non-zero distance or not set yet
            {
	      c = i + offset_u; // Index of candidate for testing
	      cdistx = distx[c];
	      cdisty = disty[c];
              newdistx = cdistx;
              newdisty = cdisty+1;
              newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
              if(newdist < olddist-epsilon)
                {
                  distx[i]=newdistx;
                  disty[i]=newdisty;
		  dist[i]=newdist;
                  olddist=newdist;
                  changed = 1;
                }

	      c = i+offset_ur;
	      cdistx = distx[c];
	      cdisty = disty[c];
              newdistx = cdistx-1;
              newdisty = cdisty+1;
              newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
              if(newdist < olddist-epsilon)
                {
                  distx[i]=newdistx;
                  disty[i]=newdisty;
		  dist[i]=newdist;
                  changed = 1;
                }
            }
          i++;

          /* Middle pixels have all neighbors */
          for(x=1; x<w-1; x++, i++)
            {
              olddist = dist[i];
              if(olddist <= 0) continue; // No need to update further

	      c = i+offset_l;
	      cdistx = distx[c];
	      cdisty = disty[c];
              newdistx = cdistx+1;
              newdisty = cdisty;
              newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
              if(newdist < olddist-epsilon)
                {
                  distx[i]=newdistx;
                  disty[i]=newdisty;
		  dist[i]=newdist;
                  olddist=newdist;
                  changed = 1;
                }

	      c = i+offset_lu;
	      cdistx = distx[c];
	      cdisty = disty[c];
              newdistx = cdistx+1;
              newdisty = cdisty+1;
              newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
              if(newdist < olddist-epsilon)
                {
                  distx[i]=newdistx;
                  disty[i]=newdisty;
		  dist[i]=newdist;
                  olddist=newdist;
                  changed = 1;
                }

	      c = i+offset_u;
	      cdistx = distx[c];
	      cdisty = disty[c];
              newdistx = cdistx;
              newdisty = cdisty+1;
              newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
              if(newdist < olddist-epsilon)
                {
                  distx[i]=newdistx;
                  disty[i]=newdisty;
		  dist[i]=newdist;
                  olddist=newdist;
                  changed = 1;
                }

	      c = i+offset_ur;
	      cdistx = distx[c];
	      cdisty = disty[c];
              newdistx = cdistx-1;
              newdisty = cdisty+1;
              newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
              if(newdist < olddist-epsilon)
                {
                  distx[i]=newdistx;
                  disty[i]=newdisty;
		  dist[i]=newdist;
                  changed = 1;
                }
            }

          /* Rightmost pixel of row is special, has no right neighbors */
          olddist = dist[i];
          if(olddist > 0) // If not already zero distance
            {
	      c = i+offset_l;
	      cdistx = distx[c];
	      cdisty = disty[c];
              newdistx = cdistx+1;
              newdisty = cdisty;
              newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
              if(newdist < olddist-epsilon)
                {
                  distx[i]=newdistx;
                  disty[i]=newdisty;
		  dist[i]=newdist;
                  olddist=newdist;
                  changed = 1;
                }

	      c = i+offset_lu;
	      cdistx = distx[c];
	      cdisty = disty[c];
              newdistx = cdistx+1;
              newdisty = cdisty+1;
              newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
              if(newdist < olddist-epsilon)
                {
                  distx[i]=newdistx;
                  disty[i]=newdisty;
		  dist[i]=newdist;
                  olddist=newdist;
                  changed = 1;
                }

	      c = i+offset_u;
	      cdistx = distx[c];
	      cdisty = disty[c];
              newdistx = cdistx;
              newdisty = cdisty+1;
              newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
              if(newdist < olddist-epsilon)
                {
                  distx[i]=newdistx;
                  disty[i]=newdisty;
		  dist[i]=newdist;
                  changed = 1;
                }
            }

          /* Move index to second rightmost pixel of current row. */
          /* Rightmost pixel is skipped, it has no right neighbor. */
          i = y*w + w-2;

          /* scan left, propagate distance from right */
          for(x=w-2; x>=0; x--, i--)
            {
              olddist = dist[i];
              if(olddist <= 0) continue; // Already zero distance

	      c = i+offset_r;
	      cdistx = distx[c];
	      cdisty = disty[c];
              newdistx = cdistx-1;
              newdisty = cdisty;
              newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
              if(newdist < olddist-epsilon)
                {
                  distx[i]=newdistx;
                  disty[i]=newdisty;
		  dist[i]=newdist;
                  changed = 1;
                }
            }
        }
      
      /* Scan rows in reverse order, except last row */
      for(y=h-2; y>=0; y--)
        {
          /* move index to rightmost pixel of current row */
          i = y*w + w-1;

          /* Scan left, propagate distances from below & right */

          /* Rightmost pixel is special, has no right neighbors */
          olddist = dist[i];
          if(olddist > 0) // If not already zero distance
            {
	      c = i+offset_d;
	      cdistx = distx[c];
	      cdisty = disty[c];
              newdistx = cdistx;
              newdisty = cdisty-1;
              newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
              if(newdist < olddist-epsilon)
                {
                  distx[i]=newdistx;
                  disty[i]=newdisty;
		  dist[i]=newdist;
                  olddist=newdist;
                  changed = 1;
                }

	      c = i+offset_dl;
	      cdistx = distx[c];
	      cdisty = disty[c];
              newdistx = cdistx+1;
              newdisty = cdisty-1;
              newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
              if(newdist < olddist-epsilon)
                {
                  distx[i]=newdistx;
                  disty[i]=newdisty;
		  dist[i]=newdist;
                  changed = 1;
                }
            }
          i--;

          /* Middle pixels have all neighbors */
          for(x=w-2; x>0; x--, i--)
            {
              olddist = dist[i];
              if(olddist <= 0) continue; // Already zero distance

	      c = i+offset_r;
	      cdistx = distx[c];
	      cdisty = disty[c];
              newdistx = cdistx-1;
              newdisty = cdisty;
              newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
              if(newdist < olddist-epsilon)
                {
                  distx[i]=newdistx;
                  disty[i]=newdisty;
		  dist[i]=newdist;
                  olddist=newdist;
                  changed = 1;
                }

	      c = i+offset_rd;
	      cdistx = distx[c];
	      cdisty = disty[c];
              newdistx = cdistx-1;
              newdisty = cdisty-1;
              newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
              if(newdist < olddist-epsilon)
                {
                  distx[i]=newdistx;
                  disty[i]=newdisty;
		  dist[i]=newdist;
                  olddist=newdist;
                  changed = 1;
                }

	      c = i+offset_d;
	      cdistx = distx[c];
	      cdisty = disty[c];
              newdistx = cdistx;
              newdisty = cdisty-1;
              newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
              if(newdist < olddist-epsilon)
                {
                  distx[i]=newdistx;
                  disty[i]=newdisty;
                  dist[i]=newdist;
                  olddist=newdist;
                  changed = 1;
                }

	      c = i+offset_dl;
	      cdistx = distx[c];
	      cdisty = disty[c];
              newdistx = cdistx+1;
              newdisty = cdisty-1;
              newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
              if(newdist < olddist-epsilon)
                {
                  distx[i]=newdistx;
                  disty[i]=newdisty;
                  dist[i]=newdist;
                  changed = 1;
                }
            }
          /* Leftmost pixel is special, has no left neighbors */
          olddist = dist[i];
          if(olddist > 0) // If not already zero distance
            {
	      c = i+offset_r;
	      cdistx = distx[c];
	      cdisty = disty[c];
              newdistx = cdistx-1;
              newdisty = cdisty;
              newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
              if(newdist < olddist-epsilon)
                {
                  distx[i]=newdistx;
                  disty[i]=newdisty;
                  dist[i]=newdist;
                  olddist=newdist;
                  changed = 1;
                }

	      c = i+offset_rd;
	      cdistx = distx[c];
	      cdisty = disty[c];
              newdistx = cdistx-1;
              newdisty = cdisty-1;
              newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
              if(newdist < olddist-epsilon)
                {
                  distx[i]=newdistx;
                  disty[i]=newdisty;
		  dist[i]=newdist;
                  olddist=newdist;
                  changed = 1;
                }

	      c = i+offset_d;
	      cdistx = distx[c];
	      cdisty = disty[c];
              newdistx = cdistx;
              newdisty = cdisty-1;
              newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
              if(newdist < olddist-epsilon)
                {
                  distx[i]=newdistx;
                  disty[i]=newdisty;
                  dist[i]=newdist;
                  changed = 1;
                }
            }

          /* Move index to second leftmost pixel of current row. */
          /* Leftmost pixel is skipped, it has no left neighbor. */
          i = y*w + 1;
          for(x=1; x<w; x++, i++)
            {
              /* scan right, propagate distance from left */
              olddist = dist[i];
              if(olddist <= 0) continue; // Already zero distance

	      c = i+offset_l;
	      cdistx = distx[c];
	      cdisty = disty[c];
              newdistx = cdistx+1;
              newdisty = cdisty;
              newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
              if(newdist < olddist-epsilon)
                {
                  distx[i]=newdistx;
                  disty[i]=newdisty;
                  dist[i]=newdist;
                  changed = 1;
                }
            }
        }
    }
  while(changed); // Sweep until no more updates are made

  /* The transformation is completed. */

}